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Abstract 

The number of Bravais lattices (or lattice types) in 
three-dimensional space is well known to be 14 if, as 
is usual, a lattice type is defined as the class of all 
simple lattices whose lattice groups (that is, arithmetic 
holohedries) belong to the same conjugacy class in 
GL(3, Z). However, it is also common in the literature 
to introduce the lattice types using the original point 
of view of Bravais (and Cauchy), according to which 
a type collects all the lattices that can be connected 
by a continuous deformation along which the lattice 
symmetry does not decrease. It is shown that these 
two definitions are in fact not equivalent. Bravais' own 
criterion results in only 11 lattice types. 

1. Introduction 

It has long been accepted in crystallography that there 
are 14 distinct ways of arranging points in three- 
dimensional space so as to form a simple lattice. These 
14 different lattice types are commonly called Bravais 
lattices because they were first correctly enumerated by 
Bravais in his well known 1850 memoir; Frankenheim 
had erroneously enumerated 15 types some years earlier 
(Frankenbeim, 1842). However, it is not always very 
clear what the definition of a lattice type (or Bravais 
lattice) is, especially in the textbooks or papers that 
do not concern themselves with the more mathematical 
aspects of crystallography. In those that do, there are at 
least three formally different definitions. 

(A) The first definition goes back to Bravais him- 
self (and Cauchy, who presented Bravais' memoir to 
the Acad6mie des Sciences). According to it, "Deux 
Assemblages de la m~me classe appartiennent ?t des 
modes distincts de sym~trie, lorsqu'en faisant varier 
d'une mani~re continue les espacements des Sommets 
de l'un des Assemblages, sans qu'il perde un seul in- 
stant ses axes de symdtrie, on ne peut, malgrd cela, 
le rendre que partiellement superposable avec l'autre 
Assemblage. "' Also, "Deux Assemblages appartiennent 
au mkme mode, lorsqu'une variation continue de leur 
paramdtres pourra les rendre coincidents." (see Bravais, 
1850, p. 95); Bravais calls 'classe' what is called today 
'crystal system', while 'mode' is what we call 'lattice 
type'. Therefore, two simple lattices in the same crystal 
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system belong to the same lattice type if and only if 
there is a continuous deformation that brings the first 
lattice onto the second one without ever losing symmetry 
elements - see §3 for a detailed statement. A form of this 
criterion is adopted by Miller (1972, p. 43). A reference 
to this point of view for the classification of lattice types 
is also given by Bradley & Cracknell (1972, p. 82) or 
Farkas (1981, p. 541), among others. 

(B) The second criterion is perhaps the one found 
most commonly in the literature on mathematical crys- 
tallography - see, for instance, Janssen (1973, p. 112) 
or Engel (1986, p. 128). It partitions lattices into types 
based on the arithmetic equivalence of their arithmetic 
holohedries, that is, of the integral representations in 
their lattice bases of their symmetry groups in 0(3). 
Again, see §3 for details. 

(C) The third definition that can be found in the 
literature partitions simple lattices into types based on 
the affine conjugacy, which is equivalent to group iso- 
morphism, of their affine symmetry groups (symmorphic 
space groups). See, for instance, Opechowski (1986, 
Section 8.3) or Schwarzenberger (1972). 

Definitions (B) and (C) above are equivalent. See, for 
instance, Burckhardt (1947, Section 17) or Opechowski 
(1986, p. 221); Janssen (1973, p. 120) gives an elemen- 
tary proof of this fact. 

In the literature, definitions (A) and (B) are implicitly 
or explicitly understood to be equivalent and, as men- 
tioned above, both are still used for defining lattice types. 
Bravais is also commonly credited with showing that the 
lattice types are exactly 14, and his construction is still 
often used as a proof. 

Two remarks are necessary regarding this point. 
Firstly, it must be noticed that, while Bravais explicitly 
stated his definition (A) above, he never used it in his 
1850 memoir to check whether his 14 lattice types were 
indeed all distinct; nor did he try to show that they are 
the only possible ones according to his definition. 

Secondly, the criterion he chose needs to be clarified 
before it can be effectively used to establish an equiv- 
alence relation among lattices. Now, any orthogonal 
transformation applied to a lattice does not change 
its symmetry, and such 'deformations' must thus be 
included in those allowed by Bravais' definition (A). 
However, (A) seems to be based on the natural no- 
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tion that there are also other deformations that do not 
change the symmetry of a lattice. Intuitively, these can 
for instance include the deformations that crystal lat- 
tices undergo under varying conditions of environmental 
temperature and pressure, for instance during thermal 
expansion etc. 

In §3, we indicate the natural way to make the 
statement (A) precise: see definition (A~), which specifies 
that, during the deformation, the holohedry of the lattice 
should never decrease, up to conjugacy in 0(3). We 
show in §4 that Bravais' criterion (A') is not equivalent 
to the arithmetic criterion (B). This clarifies Bravais' 
own words and role regarding this fundamental issue 
in crystallography and points out a misunderstanding 
seemingly not appreciated in the literature. 

On the one hand, based on the results of Niggli & 
Nowacki (1935), for instance, who enumerate all the 
three-dimensional arthmefic crystal classes (see also 
Burckhardt, 1947) or based on the results of Niggli 
(1928), who used the procedures proposed by Seeber 
(1831) to enumerate the reduced lattice bases (see Engel, 
1986, pp. 46-59), it can be shown that the lattice types 
in three-dimensional space defined according to criterion 
(B) are indeed exactly 14, that is, the well known types 
indicated by Bravais (see also Michel, 1995). 

On the other hand, we show that the classification of 
three-dimensional simple lattices according to Bravais' 
own criterion is in fact strictly coarser than the one based 
on (B), for (A I) gives only 11 distinct lattice types. 

The proof of these results is based on an analysis 
of the 'fixed sets' in the six-dimensional space C+(Q3) 
of symmetric positive-definite 3 × 3 real matrices. The 
fixed sets in C+(Q3) are the convex cones constituted by 
matrices stabilized by the natural action on C+(Q3) of 
the lattice groups, that is, of the arithmetic holohedries 
of simple lattices. 

The situation is similar in two dimensions. While this 
is an instructive example in itself, here we omit the 
details of the analysis, which can be easily derived from 
the three-dimensional case. 

We remark at the end of §4 that there is the possibility 
of a formal alternative interpretation of (A), imposing 
that the arithmetic holohedry of the lattice in GL(3, Z) 
never be decreased during the deformation. While we 
show that this gives back the 'right' classification, we 
explain why it cannot correspond to Bravais' ideas. 
Also, the lattice deformations that we consider, fol- 
lowing Bravais' words in (A), give paths in the space 
C+(Q3) of lattice metrics on which several of the 
natural lattice parameters (lengths of lattice vectors 
and interaxial angles) may suitably change. If on such 
paths only one of the lattice parameters is allowed to 
vary, then the procedure results in 14 lattice types.* 
However, no restriction of this kind is mentioned by 
Bravais. 

We thank one of the referees for this observation. 

Notice that if in definition (A) the requirement that 
there be no loss of symmetry elements along the lattice 
deformation is dropped, clearly all lattices belong to 
only one type because they can all be connected by 
means of deformations passing through suitable triclinic 
lattices. This is another way of stating the well known 
fact that from the affine point of view there is essentially 
only one simple lattice. On the other hand, if, unlike 
Bravais, increased symmetry is also prohibited along the 
deformation, the classification becomes strictly finer than 
the classical one given by (B), resulting in more than 14 
lattice types; this is shown by Schwarzenberger (1972). 

We mention that the complete picture of the topoi- 
ogy of fixed sets in C+(Q3) or, equivalently, o f  the 
group-subgroup relations among all the lattice groups 
in GL(3,7/) is not necessary here. Schwarzenberger 
(1972), Engel (1986, pp. 46-59) and Michel (1995) all 
contain very useful information regarding the structure 
of C+(Q3). As indicated by Ericksen, this is important 
for a better understanding of a variety of phenomena 
connected with phase transitions in crystals, whose in- 
vestigation spurred the present work, as well as an 
increasing bulk of literature - see Ericksen (1979, 1980, 
1989, 1993), Ball & James (1992), James (1992), Pitteri 
& Zanzotto (1996), and references quoted therein. 

In §4, we exhibit the only three Bravais-type deforma- 
tions connecting lattices that are inequivalent according 
to (B); they have been shown by Ericksen (1996) to 
be thermodynamically possible paths of equilibria for 
crystals undergoing solid-to-solid phase transitions while 
in contact with a heat bath with suitably controlled tem- 
perature and pressure. This theoretical possibility raises 
interesting questions, especially from the experimental 
point of view. 

2. Preliminaries 

In order to explain in detail the statements made in the 
Introduction, it is necessary to give some definitions. 

For the purposes of this paper, it is sufficient 
to consider simple lattices in the three-dimensional 
inner-pi:oduct vector space R 3 rather than in the three- 
dimensional Euclidean affine space. Thus, we define a 
simple lattice ~(Ea) as follows: 

7"~(Ea) = { x E R  3 :x=/~raEa , a =  1,2,3, M a E~'}, 

(1) 

where the three linearly independent vectors E a in R 3 
(a -- 1, 2, 3) are called the lattice vectors of 7"~(Ea) (or 
the lattice basis). In (1) and in what follows, the sum- 
mation convention over repeated indices is understood. 
When there is no danger of confusion, 7"~(Ea) will be 
indicated by ~ only. The parallelepiped 79(Ea) spanned 
by E a is called a unit cell of T~. 

Following the notation of Michel (1995), we denote 
by Q3 the space of all symmetric 3 × 3 matrices and 
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by C + ( 2 3 )  C 23 the set of symmetric positive-definite 
matrices. Since any positive multiple of a matrix in 
C+(23) is still in C+(23),  and any convex combination 
of elements of C + (23) alSO belongs to C + (23), the latter 
is a convex cone. The symmetric positive-definite matrix 

C=(Cab ) , C a b = E  a ' E  b (2) 

is the lattice metric. The volume of ~(Ea)  is given by 

vol 2 ~(Ea) = det C. (3) 

Clearly, the lattice 7¢. does not select its lattice vectors, 
for these are determined only up to transformations 
belonging to the group GL(3, Z) of the 3 x 3 invertible 
(unimodular) matrices with integral entries. This can 
easily be seen by considering that any new basis E~a 
of 7~ is obtained from the old basis E a by means of a 
linear transformation with integral coefficients: 

t b b 
E a = m~E b, m a E 7/; (4) 

now, in order that E~a be again a basis, the volume of 
T~(E~a) must be the same as the volume of 7:~(Ea). Since, 
in obvious notation, under a transformation (4) the lattice 
metric transforms as 

C' = mtCm, (5) 

the equality of the volumes of the cells is possible if and 
only if the transformation matrix m in (4) is such that 
det m = -4-1, that is, 

T~(mbEb) = ~(Ea)  ¢:~ m E GL(3, 7/). (6) 

The (geometric) holohedry P(Ea) of 7P,.(Ea) is the 
finite group of all the orthogonal transformations Q in 
0(3) that leave R(Ea) invariant, which are called the 
symmetry operations for 7"~(Ea). In view of (4), this can 
be defined as 

P(Ea) ={Q E 0(3) . Q E  a t, = maEb, m E GL(3, Z)}. 

(7) 

It is immediately seen that the holohedry P(Ea) of 
7"~(Ea) is independent of the lattice basis: 

P(mabEb) = P(E~) for all m E GL(3, 7/), (8) 

so that P(Ea) depends only on the lattice 7"~(Ea) it- 
self. Furthermore, since P(Ea) describes some symmetry 
properties of T~(Ea) which should be considered equiv- 
alent in any lattice congruent to T~(Ea), and since 

P(REa) "- RP(Ea)R t for all R E O(3), (9) 

it is customary to consider, rather than the holohedry 
P(Eo) itself, its conjugacy class in 0(3); the 0(3)- 
conjugacy classes of the holohedries are called crystal 

systems. The lattices themselves are considered (geo- 
metrically) equivalent based on the fact that their holo- 
hedries are equivalent in O(3), in which case they are 
said to belong to the same crystal system. 

A well known result in crystallography states that 
there are seven crystal systems: triclinic, monoclinic, 
orthorhombic, tetragonal, trigonal or rhombohedral, 
hexagonal and cubic (see Table 1). 

The matrices m appearing in (7) give a finite sub- 
group L(Ea) of GL(3, 7/) called the lattice group, or the 
arithmetic holohedry, of R(E,~): 

Z(Ea) -- {m E GL(3, Z)ImbEb = QE a, Q E 0(3)}. 

(10) 

An orthogonal transformation does not change the lattice 
group: 

L ( R E a )  - -  L(Ea) for all R E O(3); (11) 

thus, L(Ea) can be equivalently defined as [see (2)] 

t ( E a )  = {m E GL(3, 7 ) :  mtCm = C}. (12) 

Therefore, the lattice group L(Ea) is the stabilizer of 
the lattice metric C under the action of (5) and can be 
denoted by L(C). The lattice group also determines a 
connected set in the space C+(23), called thefixed set of 
L(Ea), denoted by I(L(Ea)), consisting of all the metrics 
stabilized by L(E,,): 

I(Z(Ea) ) ---{Ct E C+(23) :  mtCtm = Ct 

for all m E t ( E a )  }. (13) 

A change of lattice basis does not change a lattice but 
changes its lattice group L(Ea) as follows: 

L(mbEb) = m-lL(Ea)m, m E GL(3,71); (14) 

this leads to considering as (arithmetically) equivalent 
the lattice groups that are conjugate within GL(3, Z). 

3. Classification criteria 

The (geometric) holohedry P(Eo) does give a description 
of the symmetry properties of a simple lattice ~(E~);  
however, a sharper characterization of such properties 
is given by the arithmetic holohedry (lattice group) 
L(Ea). Indeed, a given holohedral group P C 0(3) 
does in general determine various arithmetically inequiv- 
alent lattice groups, depending on the basis E a chosen 
among those for which P = P(Ea). This is because the 
same symmetry operation in 0(3) can be represented 
in different bases by integral matrices which need not 
be conjugate in GL(3,71): this makes conjugacy in 
GL(3, Z) a stricter condition than conjugacy in 0(3) 
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triclinic 

Table 1. Diagram of  the holohedries 

mmm 4/mmm 
orthorhombic ~ tetragonal 

/ .L ,L 
2 / m 6 / mmm m3m 

monoclinic hexagonal cubic 
\ /" 

trigonal 

or in GL(3, R). Therefore, based on (14), a natural 
equivalence relation is obtained for the bases of R 3 
and the lattices they generate, which is at the origin of 
criterion (B) stated in the Introduction. According to this 
point of view, two simple lattices ~(E,,)  and 7"~(Eta) are 
said to have the same lattice type or to belong to the same 
Bravais lattice if their lattice groups are arithmetically 
equivalent, that is, if 

L(Eta) = m-lL(Ea)m for some m E GL(3,71). (15) 

From (4) and (14), this means that two simple lattices 
have the same symmetry type if and only if there are 
choices of their bases such that the associated lattice 
groups coincide. Since (15) remains true if we replace 
E a and E~a by equivalent triples of lattice vectors, the 
definition above does introduce an equivalence relation 
among the simple lattices themselves, which is criterion 
(B). As we recalled in the Introduction, according to this 
definition there are exactly 14 distinct types of lattice, 
that is, the classical ones indicated by Bravais. They are 
subdivided in the well known way into the seven crystal 
systems. 

Let us now consider Bravais' criterion (A). We already 
pointed out in the Introduction that, although he had 
listed his 14 lattice types in his 1850 memoir and had 
corrected an earlier list of Frankenheim, he aCtually 
never used his own definition (A) to show either that 
none of his 14 types are coincident or that there could be 
no more than those he enumerated. In order to effectively 
utilize Bravais' criterion (A) for distinguishing lattice 
types, it is necessary to phrase it in terms of the notions 
introduced in §2. Bravais' words are rather explicit; 
throughout his 1850 memoir, he clearly considers the 
holohedries of the lattices he constructs and states, 
on p. 94, that within each crystal system (that is, to 
within orthogonal transformations) the axes and planes 
of symmetry are the same: "On a d~ja pu remarquer 
que, dans une mOme classe d'Assemblages, venaient se 
grouper des Assemblages ?t modes d'agencement des 
Sommets complgtement distincts, quoique les axes et 
plans de symdtrie fussent les m~mes de part et d'autre". 

Here, as already recalled in (A), 'assemblage' means 
'lattice' and 'classe' means 'system'. This point of 
view is undoubtedly shared by most present-day authors 
and, for instance, is reflected by the fact that in the 

literature the expression 'point group' is used to indicate, 
indifferently, either the finite subgroups of 0(3) or their 
conjugacy classes in 0(3). Since the symmetry of a 
lattice is unchanged by any orthogonal transformations, 
which are just particular 'deformations', from Bravais' 
own standpoint the way to phrase precisely his criterion 
(A) is the following: 

(A ~) Two lattices T¢ and ~ in the same system 
have the same symmetry type if and only if there is 
a continuous deformation of lattices 

[o,  1] ,  = = 

(16) 

such that the holohedry of 7 ~  contains that of 7~ or ~ 
for any A, up to conjugacy in 0(3).  

For brevity, a deformation between two lattices with 
the properties mentioned in this definition will be re- 
ferred to as a Bravais connection between them. 

A remark must be made about the existence of a 
Bravais connection between two lattices. Since lattices 
are referred to their bases, a connection between lattices 
can be given in terms of the lattice vectors. However, 
since lattices that differ by a rotation are trivially con- 
sidered equivalent, the Bravais connections can be given 
in terms of the lattice metrics rather than lattice bases. 
This means that their existence can be investigated in 
the space C+(Q3) and we will do so in the next section. 

Also, it is important to notice that, if two lattices 
admit a Bravais connection, such a connection cannot 
in general be given in terms of any bases or metrics; 
in fact, only suitable bases, or metrics, will do. The 
reason is that a given lattice is represented in an infinite 
number of arithmetically equivalent ways - see (4) and 
(5) - in the space of lattice bases or in C+(Q3), and 
this redundancy does not 'behave well' with respect to 
the existence of Bravais connections. This is clear if we 
think that even most pairs of distinct bases or metrics 
for the same lattice do not admit a Bravais connection. 

Rather than introducing a formal 'space of lattices', 
for instance as a quotient GL(3, R) : GL(3, 71), with the 
consequent quotient topology, we will investigate the 
existence of Bravais connections directly in C+(Q3), 
keeping track of the redundancies of the representation 
when necessary, and indicating 'suitable' representatives 
when they exist. 

In the following lemma, we recall a number of 
properties of lattice groups and their fixed sets that are 
useful in the next section. 

Lemma 3.1. (i) A subgroup of GL(3, 7/) is (a subgroup 
of) a lattice group if and only if it is finite. 

(ii) The fixed set of a subgroup of GL(3,72) is 
nonempty if and only if the subgroup is (included in) 
a lattice group. 

(iii) The fixed set of any finite subgroup of GL(3, Z) 
is a convex set. 
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(iv) The fixed sets of two finite subgroups of GL(3, Z) 
have a non-empty intersection if and only if the two sub- 
groups together generate a finite subgroup of GL(3, Z), 
whose fixed set is the intersection of the given fixed sets. 

For the proof of these statements, and for other 
information on lattice groups and their fixed sets, we 
direct the reader to Ericksen (1979) or to Michel (1995). 

4. Classification of simple lattices 
according to Bravais' criterion 

In this section we study the classification of simple 
lattices according to Bravais' criterion. In doing so, we 
take for granted the classification of lattices according 
to (B)* because the analysis of the existence of Bravais 
connections rests on the knowledge of the structure of 
the space C+(Q3). The basic observation here is that the 
metrics belonging to the fixed set of any given lattice 
group all correspond to equivalent lattices according to 
(B), while the metrics of inequivalent lattices according 
to (B) never belong to the same fixed set. Thus, in a 
Bravais connection between two given lattices that are 
in the same system and are arithmetically inequivalent, 
the deformed lattice must leave its original fixed set 
by passing through the intersection with another fixed 
set. Such intersection is itself the fixed set of a lattice 
group that is strictly larger than the original ones, as 
a consequence of lemma 3.1. This means that Bravais 
connections necessarily go through a lattice of strictly 
higher symmetry than the given lattices. 

Lemma 4.1. Criterion (A ~) is coarser than criterion (B). 

Proof. This is an immediate consequence of lemma 
3.1. Indeed, if any two given lattices are of the same 
type according to (B), then by hypothesis there exist 
suitable bases relative to which they have the same 
lattice group. This means that the corresponding lattice 
metrics belong to the same fixed set in C+(Q3). Thus, 
so does the segment between these two metrics, and this 
gives a Bravais connection making the two given lattices 
equivalent according to (A~). 

We will now show that Bravais connections between 
arithmetically inequivalent lattices are possible, meaning 
that definition (X) is strictly coarser than definition 
(B). 

Proposition 4.1. (Classification of simple lattices ac- 
cording to Bravais" criterion). There are exactly 11 
different types of three-dimensional simple lattices 
according to definition (A'): triclinic, monoclinic, 

* Notice that the lack of such preliminary knowledge would make it 
unclear how to proceed with this task. Bravais' own criterion (A) in- 
volving deformations indeed requires that the further notions regarding 
symmetry based on arithmetic equivalence be already established and 
fully utilized. As this point of view on symmetry was developed later 
than 1850, we may see one reason why Bravais did not actually use 
his own criterion (A) for classifying lattices in his famous memoir. 

primitive orthorhombic, body-centered orthorhombic, 
primitive tetragonal, body-centered tetragonal, trigonal, 
hexagonal, primitive cubic, body-centered cubic, face- 
centered cubic. 

Proof. According to definition (A') and to lemma 4.1, 
we only need to investigate separately the existence of 
Bravais connections among the lattice types that are al- 
ready discriminated by definition (B) within each crystal 
system, which are well known; only the monoclinic, 
orthorhombic, tetragonal and cubic systems have more 
than one lattice type. 

4.1. Cubic system 
According to definition (B), in this system there are 

three distinct lattice types: primitive, body centered and 
face centered. There are no Bravais connections among 
them. To see this, recall that the cubic lattice groups are 
all finite maximal subgroups in GL(3, Z); this property 
derives from the maximality of their conjugate copies as 
finite subgroups of 0(3).  Maximality implies that any 
two distinct cubic lattice groups generate a subgroup of 
GL(3, 7:), which is infinite and thus cannot be a lattice 
group by lemma 3.1(i). This in turn means that the 
corresponding cubic fixed sets never intersect in C + (Q3) 
by lemma 3.1(iv). A Bravais connection between any 
two cubic lattices of different type is thus impossible 
and therefore the three cubic types also remain distinct 
according to definition (A~). 

4.2. Tetragonal system 
For the two tetragonal lattice types that are distinct 

according to definition (B), that is, the primitive and 
the centered ones, we prove that there are no Bravais 
connections. This leaves them distinct also according to 
definition (A~). 

In this case, we must show that there are no Bravais 
connections between any pairs of representatives in 
C+(Q3), say Cp and C c, of ineqnivalent tetragonal 
lattices A prioi'i, C can be chosen in any one of 

. " . p_  

the mfimtely many fixed sets, each corresponding to 
one of the arithmetically equivalent lattice groups of 
the tetragonal primitive type, and analogously for C c 
and the fixed sets of the infinitely many equivalent 
lattice groups of the tetragonal centered type. If we 
suppose that a Brav0.is connection between the inequiva- 
lent metrics C and C c exists, lemma 3 l(iv) specialized 

p 

to this tetragonal case shows that such a connection 
must necessarily pass through a lattice whose metric, 

say, belongs to the fixed set of a lattice group of one 
of the three inequivalent cubic types. Also, it can be 
concluded that L(Cp) C L(C) and L(Cc) C L((7). Thus, 
in order to show that no Bravais connections exist, 
we just need to check that no cubic lattice group can 
contain inequivalent tetragonal subgroups. To this end, 
it is enough to restrict ourselves to the subgroup of 
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elements with positive determinant of any lattice group 
we will be considering. Here and in what follows, we 
will do so without changing the nomenclature and by 
adding a ' + '  to the symbols. 

A check on the order of a cubic lattice group, L + ((7) 
say, and of its possible tetragonal subgroups shows that 
the latter are necessarily three and are all conjugate 
within L+(C). This is an immediate consequence of 
the well known Sylow theorem - see, for instance, 
McLane & Birkhoff (1967). Since conjugacy in L+((7) 
clearly makes all the tetragonal subgroups arithmetically 
equivalent, there can never be inequivalent tetragonal 
lattice groups with a common cubic supergroup. Thus, 
Bravais connections between inequivalent tetragonal lat- 
tices cannot exist and the two lattice types in this system 
remain inequivalent also with respect to criterion (A'). 

Incidentally, we mention that it is possible to arrive 
at the same conclusion by analyzing the positions of the 
tetragonal fixed sets in the interior or on the boundary 
of the fundamental region in C+(Q3), considered, for 
instance, by Opechowski (1986, p. 214), whose elements 
are the lattice metrics corresponding to the so-called 
(reduced) Dirichlet bases. 

4.3. Orthorhombic system 

In this system, there are four lattice types that are 
distinct according to definition (B): primitive, base- 
centered, body-centered and face-centered. 

We first show that there are Bravais connections: (i) 
between the primitive and the base-centered types - 
this 'phase transition' was first discussed by Ericksen 
(1979); and (ii) between the body-centered and the face- 
centered types. We will then show that there are no 
further connections, so that two lattice types remain 
distinct in this system according to definition (A'). 

Inspection of the fixed sets of the orthorhombic sys- 
tem shows that Bravais connections exist between in- 
equivalent metrics in the appropriate fixed sets: for 
simplicity, we only give the expressions of the corre- 
sponding metrics with their independent entries, without 
reference to the actual lattice bases, which can be seen 
in the figures. 

In order to show the existence of a Bravais connec- 
tion between primitive and base-centered orthorhombic 
lattices, consider the orthorhombic primitive metric (see 
Fig. la): 

0 0) 
C = C22 0 , (17) 

0 C33 

and the base-centered orthorhombic metric (see Fig. 1 c) 

-- C22 C23 • 
c23 c= 

(18) 

By varying the lattice paralneters in C and C above, 
we obtain the fixed sets, I and 1 say, of the lattice groups 
L(C) and L(C), respectively. It is easy to see that I and I 
intersect in the fixed set of a primitive tetragonal lattice 
group, whose typical element C has the form (see Fig. 
lb) 

C {Cll .0 0 / 
=lto .)  (19) 

This is obtained from (17) for C l l "  : C l l  , C22 : 
¢22 -- C33 and from (18) for Cii : Cii , i = 1,2, and 
C23 = 0. Thus, in this case, for any choice of C as in 
(19), a Bravais connection between the two inequivalent 
orthorhombic lattices (17) and (18), passing through a 
primitive tetragonal lattice, can be given by the union 
of the segments 

A H AC+ (1 - A)C 

and 
A ~ C + ( 1 - A ) C ,  AE[0,1] ,  (20) 

the first belonging to I and the second to I by lemma 
3.1(iii). 

For a face-centered orthorhombic lattice, the metric 
can be given the form 

( Cll l o l l  l C l l  ~ 

C =  / Ic11  C22 1Cll , )  (21) 

t l C l ,  lc11 C33 

and, for a body-centered orthorhombic lattice, the form 

e=/,c,, (22) 

Again, by varying the parameters in C and C, we 
obtain the fixed sets, I and I say, of the lattice groups 
L(C) and L((?), respectively, which intersect in the fixed 

lg  

(a) (b) (c) 

Fig. 1. Lattice bases used for the Bravais connection given in (17)-(19). 
(a) The primitive orthorhornbic basis. (b) The primitive tetragonal 
basis. (c) The base-centered orthorhombic basis. 
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set of a centered tetragonal lattice group, whose typical 
element (7 has the form (see Fig. 2b) 

( ~"11 1C'll 1C'I1 ) 

~klell 1Cll C22 
This can be obtained from (21) for C22 = vC'22 ~ C33 , 
C11 W Cll, and from (22) for Cll = Cll, C22 = 
C22, C23 = ¼Cll" Therefore, in this case, a Bravais 
connection between the two inequivalent orthorhombic 
lattices, passing through a centered tetragonal lattice, can 
again be given by the union of the segments in (20), 
with the choices (21), (22) and (23) for C, C and C, 
respectively. 

Henceforth, inequivalent  orthorhombic types will re- 
fer for brevity to the lattice types in the orthorhombic 
system and to their lattice groups or fixed sets, which are 
still ineqnivalent according to (A ~) after having given the 
Bravais connections (17)-(20) and (20), (21)-(23). 

In order to show that there are no Bravais connec- 
tions between the inequivalent orthorhombic types, we 
proceed in a way that is analogous to the tetragonal case. 

First, we show that no Bravais connections are possi- 
ble that pass directly through the intersection of fixed 
sets of inequivalent orthorhombic lattice groups. As 
we have seen above, this amounts to showing that no 
two such groups admit any lattice group as a common 
supergroup. The latter, if it existed, would necessarily 
be a tetragonal, a cubic or a hexagonal group, owing to 
lemma 3.1(iv). No other cases are possible because the 
cubic and hexagonal lattice groups are maximal finite 
subgroups of GL(3 ,  ?7). 

The case of a hexagonal supergroup is strictly anal- 
ogous to the cubic tetragonal case considered above. In 
fact, the orders of the hexagonal and the orthorhombic 
groups are such that the Sylow theorem can again be 
applied so that there are three necessarily conjugate, 
and hence equivalent, orthorhombic subgroups in any 
hexagonal lattice group. Thus, there cannot be Bravais 
connections between ineqnivalent orthorhombic lattices 
through any hexagonal lattice. 

(a) 

I ~'\\ 
E2 

I/ 

"L3 
(b) (c) 

Fig. 2. Lattice bases used for the Bravais connection given in (21)-(23). 
• (a) The face-centered orthorhombic basis. (b) The centered tetrag- 

onal basis. (c) The body-centered orthorhombic basis. 

For the cubic and tetragonal supergroups, the analysis 
is slightly more complex. It is convenient to examine 
both these cases at once and to do so preliminarily in 
0(3). Consider any cubic lattice basis E,~. From the 
theory of finite groups, it is well known that • the cubic 
holohedry P+(Ea), which is isomorphic to the group 
S 4 of permutations of four objects, admits the three 
conjugate tetragonal subgroups T i, i -- 1, 2, 3, mentioned 
earlier, and four orthorhombic subgroups; three of them, 
0 i, i -- 1, 2, 3, say, are conjugate in P+(Ea) and the 
remaining one, O 4 say, is normal in  P+(Ea) and thus 
is not conjugate in P+(Ea) to any one of the 0 r Each 
0 i is a subgroup of one and only one of the (conjugate) 
tetragonal subgroups T i in P+(E~) and O 4 is a subgroup 
of all the T i. 

Let us consider the 'pure s t r e t c h e s '  '~,r i --- 'VI > 0, 
i = 1, 2, 3, and {1 --  ~jt > 0, having the form 

f¢l = 71(k1 - k2) ® (kl - k2) 

+72(k l  + k 2 ) ® ( k  I +k2)  + 7 3 k 3 ® k  3, 

71 # 72, 

"V2 --" RTr/2(kl)'U~'l [RTr/2(kl)] t, (24) 

'(~3 : RTr/2(k2)grl [RTr/2(k2)]t., 
= 71kl Q k 1 + 'r/2k2Q k 2 + 73k3 ~) k 3, 

71 76 72 76 73 ~6 71, 

where the real numbers 71, 72, 73 are all positive; the k o 
are the three orthonormal vectors along the axes of the 
three fourfold elements of P+(E~) and R°(k) denotes 
the •rotation by the angle 0 about the axis k. We then 
have 

0 i = P + ( v i E a ) ,  i =  1,2,3, 0 4=P+(I]E,~) ;  (25) 

furthermore, the three conjugate tetragonal subgroups T/ 
in P+ (E~) are given by 

T i = P+ (U/Ea), (26) 

w h e r e  [1 i has the same form as (I in (24) with the 
further condition that only the ith eigenvalue is different 
from the two other ones. The group-subgroup relations 
are summarized in the diagram in  Fig. 3, where the 
horizontal lines indicate conjugacy in P+(E,,). 

c 

Ot 02 03 04 

Fig. 3. Diagram of the group-subgroup relations among the cubic, 
tetragonal and orthorhombic holohedries; the horizontal lines mean 
conjugacy in the cubic group. 
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The same group-subgroup relations clearly hold for 
the lattice groups representing the above holohedries 
relative to their own bases. Now, it is not difficult to 
check that: 

(i) If E a is a basis for a primitive cubic lattice, then 
UiEa are all bases for tetragonal primitive lattices, (JE a 
generates a primitive orthorhombic lattice and fiiE~ are 
all bases for base-centered orthorhombic lattices. 

(ii) If E a is a basis for a body-centered cubic lattice, 
the (JiEa_ are all bases for body-centered tetragonal 
lattices, UE a generates a body-centered orthorhombic 
lattice and the ViE a are all bases for face-centered 
orthorhombic lattices. 

(iii) If E a is a basis for a face-centered cubic lattice, 
the UiEa all generate face-centered tetragonal lattices 
(which are indeed equivalent to the body-centered ones 
obtained in the previous case), I]E a generates a face- 
centered orthorhombic lattice and the V i E  a are all bases 
for body-centered orthorhombic lattices. 

Clearly, all these statements are true regardless of the 
cubic basis E,~ chosen at the beginning from all those 
geometrically equivalent to any given one. 

It can be verified that the analysis above allows one 
to retrieve the Bravais connections given in (17)-(20) 
and in (20), (21)-(23). At the same time, it also shows 
why inequivalent orthorhombic lattices, that is, lattices 
belonging to fixed sets of primitive or base-centered 
types on the one hand and to face-centered or body- 
centered types on the other hand, do not admit any 
Bravais connection through the intersection of their 
fixed sets, for they do not admit any common finite 
supergroup. 

In principle, 'indirect' Bravais connections that do not 
pass directly through the intersection of the fixed sets of 
two given inequivalent orthorhombic lattices are still a 
possibility. Let C O and C 1 be the metrics of two such 
lattices and let us suppose that there exists an indirect 
Bravais connection A H C(A), A E [0, 1] between them. 
When leaving the fixed set I 0 = I(L(Co) ), of which C O 
is an element, C x must enter the intersection of I 0 with 
some intermediate fixed set, say I2, which by hypothesis 
is different from 11 = I(L(C1) ). We have seen above that 
I 0 n 12 is then the fixed set of a tetragonal, hexagonal or 
cubic lattice group containing L(Co). Clearly, 12 must 
not be an orthorhombic fixed set equivalent to I 0 or the 
deformation would be trivial. This immediately excludes 
the possibility that 12 fq I 0 be either a tetragonal or a 
hexagonal fixed set, owing to the previous analysis of 
the subgroups of the tetragonal or hexagonal supergroups 
of any orthorhombic lattice group. Thus, I 2 71 I 0 would 
have to be cubic. However, this case also does not 
allow for indirect Bravais connections between C O and 
C I. Indeed, if I 2 N I 0 is cubic, I 2 must be tetragonal 
(it could in principle be orthorhombic but necessarily 
equivalent to I0, a case we excluded as trivial). Again 
from the analysis of the tetragonal subgroups of the cubic 
groups, we see that from I 2 it would be impossible for 

C(A) to reach any inequivalent orthorhombic fixed set 
because inequivalent orthorhombic lattice groups only 
admit inequivalent tetragonal supergroups [we have seen 
from (i), (ii) and (iii) above that no tetragonal lattice 
group is a subgroup of two distinct cubic lattice groups 
containing inequivalent orthorhombic lattices]. 

This concludes the proof that there are two distinct 
lattice types in the orthorhombic system, according to 
(A'). 

4.4. Monoclinic system 
The primitive and the face-centered monoclinic lat- 

tices are known to be the only two types in this system 
that are distinct according to definition (B). An analysis 
of the intersections of the monoclinic fixed sets is 
naturally possible also in this case through the study of 
the group-subgroup relations of the monoclinic lattice 
groups with the 'larger' lattice groups. This shows that 
Bravais connections between the inequivalent mono- 
clinic lattices are indeed possible. Here we only give an 
example and omit the general analysis. The inequivalent 
monoclinic lattices admit the following metrics: 

primitive monoclinic (see Fig. 4a) 

\o{C'1° o) c - / o  
C23 C33 

base-centered monoclinic (see Fig. 4c) 

11 C12 0 

C - -  ~C~2 C22 (28) ~ le33 . 

½c33 c33 
As the lattice parameters are varied arbitrarily in C and 

• C, we obtain the fixed sets of the lattice groups L(C) and 
L((?), respectively, which have a non-empty intersection 
consisting of the following metrics (see Fig. 4b): 

~ x v (29) -- C22 2 C33 • 
lc33 

z z z 

i 

(a) (b) (c) 
Fig. 4. Lattice bases used for the Bravais connection given in (27)-(29). 

(a) The primitive monoclinic basis. The twofold axis is x. (b) The 
base-centered orthorhombic basis. (c) The base-centered monoclinic 
basis. The twofold axis is z. 
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This is the fixed set of the lattice group of a base- 
centered orthorhombic lattice, which is obtained from 
(27) for C i i Cii, i = 1, 2, 3, and C23 1 - = v = ~C33, and f r °m 
(28) for Cii = Cii, i = 1, 2, 3, and C12 = 0. Thus, in this 
case, a Bravais connection between two inequivalent 
monoclinic lattices, passing through a base-centered 
orthorhombic lattice, can be given by the union of the 
segagents (20) with the choices (27), (28) and (29) for 
C, C and C, respectively. 

This shows that there is only one lattice type in the 
monoclinic system according to definition (A0 and it 
completes the proof of proposition 4.1. 

4.5. Other interpretations of  (A) 

Proposition 4.1 makes it interesting to consider other 
interpretations of (A), which, although less adherent to 
Bravais' own spirit, can give the same classification as 
(B). One possibility is to consider that in (A) the axes or 
planes of symmetry are intended to be 'material' during 
the lattice deformation. The notion of material lines or 
planes in a family of deformations for a body is classical 
in continuum mechanics and it refers to lines or planes 
that are 'in the matter',  that is, pass through the same 
material points (in this case lattice points) during the 
deformation considered. In this interpretation, the axes 
or planes of symmetry mentioned in (A) necessarily have 
constant indices with respect to any given lattice basis 
E,, of the deforming lattice and are thus determined by 
the matrices (ma b) belonging to the lattice group L(Ea). 
The requirement in (A) that there be no loss of symmetry 
elements corresponds to assuming that in (16), for any 
)~, the lattice group of ~ x  contains that of ~ or ~ '  and 
the lattice groups of ~ and ~ '  coincide. 

It is easy to see from this definition and the arguments 
used for lemma 4.1 that, in this interpretation, (A) is 
equivalent to (B); indeed, since by hypothesis for the 
end lattices ~ and ~ '  there are bases such that the 
corresponding lattice groups coincide, ~ and ~ '  are 

necessarily equivalent according to (B). 
However, this interpretation of (A) cannot be regarded 

to reflect Bravais' ideas because the equivalence with 
(B) rests only on the assumed properties of the end 
lattices and not on the properties of the deformation, 
any mention of which becomes inessential. 
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